Laforce qui attire deux corps cĂ©leste est d'autant plus importante que ceux-ci sont rapprochĂ©s. Or, il se trouve que la lune est un astre trĂšs Ă©loignĂ© de la terre. Donc, cette force gravitationnelle qui l'attire vers la terre est extrĂȘmement faible. Et cette faiblesse l'empĂȘche de

S'il est bien une rĂ©volution de la physique qui est enseignĂ©e Ă  nos lycĂ©ens, c'est bien cette vision qu'a eu I. Newton un matin de 1666-1667, ce n'est pas trĂšs qu'il sĂ©journe Ă  la campagne, loin de Londres et ses Ă©pidĂ©mies de peste et grippe, la lĂ©gende raconte qu'assoupi Ă  l'ombre d'un pommier le jeune scientifique reçoit sur sa tĂȘte une pomme tombe par terre, ce n'est pas nouveau. Mais Ă  ce moment lĂ , I. Newton a l'idĂ©e d'identifier la coupable la gravitation comme Ă©tant Ă©galement celle qui est responsable du mouvement de la Lune autour de la alors expliquer que la Lune ne tombe pas sur la Terre alors que la pomme tombe ? Comment expliquer que la Lune tourne autour de la Terre et pas la pomme dĂšs lors qu'elle n'est plus solidaire de son pommier natal ?Tout est une question de vitesse initiale. En fait, la Lune tombe comme la pomme, mais comme elle avait au dĂ©part une certaine vitesse, son Ă©lan compense l'attraction par la Terre, ce que le schĂ©ma ci-dessous rĂ©sulte en une trajectoire circulaire en premiĂšre approximation, en fait c'est un poil plus complexe de la Lune autour de la pomme, au moment oĂč elle se dĂ©solidarise de son pommier, n'a aucune vitesse initiale, aucun Ă©lan initial l'empĂȘchant de nous prenons une pomme sur le sol et que nous la lançons parallĂšlement au sol Ă  une vitesse de km/s appelĂ©e premiĂšre vitesse cosmique alors elle se satellisera autour de la Terre, en rasant le sol Ă  chaque instant ce en nĂ©gligeant les effets des frottements de l'air qui ralentissent en fait la pomme.Pourquoi la Lune avait une vitesse initiale est un autre dĂ©bat. Remarquez aussi que ceci s'applique au mouvement de la Terre autour du Soleil. La Terre tourne autour du Soleil car initialement elle avait une vitesse initiale tangente Ă  sa trajectoire, un Ă©lan initial, mais elle n'a pas poursuivis la direction que son Ă©lan initial lui destinait, Ă©tant Ă  chaque instant attirĂ©e par le Soleil. Notez enfin que l'absence de frottements dans l'espace oĂč rĂšgne un quasi-vide fait que l'Ă©lan initial donnĂ© il y a des milliards d'annĂ©es aux planĂštes est encore prĂ©sent aujourd'hui quasi-inchangĂ©.

LaLune ne tombe pas vers la Terre en ce moment parce que la Terre tourne d'elle-mĂȘme. L'Ă©nergie de la propre rotation de la Terre autour de son axe est progressivement transfĂ©rĂ©e en Ă©nergie du mouvement orbital de la Lune. C'est pourquoi la vitesse de rotation de la Terre diminue mais la distance Ă  la Lune augmente.
La Lune est le seul satellite naturel de la Terre. Elle est notre compagnon le plus fidĂšle. Elle orbite autour de la Terre depuis des milliards d’annĂ©es. Avant que les premiĂšres traces de vie n’apparaissent dans les ocĂ©ans. Avant mĂȘme que la Terre ne soit suffisamment froide pour abriter des ocĂ©ans. Cependant, cette sĂ©rĂ©nitĂ© qui rĂšgne dans le ciel nocturne est le fruit d’un passĂ© particuliĂšrement houleux. La Lune serait nĂ©e peu de temps aprĂšs la formation du systĂšme solaire et la projection de comĂštes, de mĂ©tĂ©ores et d’astĂ©roĂŻdes, il y a 4,5 milliards d’annĂ©es. La collision entre la Terre et un bolide de la taille de Mars aurait fait tourbillonner de la roche en fusion dans l’espace. Au fil du temps, des nuages de dĂ©bris se seraient rassemblĂ©s pour former la Lune. Cette formation prĂ©coce et les liens Ă©troits qu’elle entretient avec la jeune Terre font de la Lune l’un des Ă©lĂ©ments les plus prometteurs pour comprendre la naissance et le dĂ©veloppement de notre systĂšme solaire et de notre planĂšte. La Lune conserve Ă©galement nombre de ses caractĂ©ristiques d’époque. Contrairement Ă  la Terre, elle ne possĂšde pas de plaques tectoniques actives qui modifient sans cesse le paysage. De mĂȘme, ni vent ni pluie n'usent ses roches anciennes. Plusieurs gĂ©nĂ©rations d’astronomes ont explorĂ© ce petit monde dĂ©pourvu d’air, de sa surface grĂȘlĂ©e par les impacts Ă  son noyau interne composĂ© de fer. C’est le seul autre monde oĂč l’Homme a posĂ© le pied, un candidat de choix pour de futurs voyages spatiaux. FACE VISIBLE, FACE CACHEE Dans notre systĂšme solaire, plus de 190 satellites naturels orbitent autour des planĂštes et des astĂ©roĂŻdes, la Lune Ă©tant le cinquiĂšme plus grand. Son diamĂštre est d’environ 3 500 kilomĂštres, soit le tiers du diamĂštre de la Terre. La distance Terre-Lune est Ă©gale Ă  30 fois le diamĂštre de la Terre. La durĂ©e de rotation de la Lune sur elle-mĂȘme est sensiblement la mĂȘme que sa rotation autour de la Terre environ 27,3 jours. Cette danse cĂ©leste est mieux connue sous le nom de rotation synchrone. Depuis la Terre, nous voyons donc toujours la mĂȘme face lunaire, illuminĂ©e par le Soleil. On passe par diffĂ©rentes phases lunaires nouvelle lune, pleine lune, croissant de lune. Celles-ci dĂ©pendent de la position de la Lune par rapport Ă  la Terre et au Soleil. Un cycle lunaire complet dure 29,5 jours. S’il est vrai que la Lune montre toujours Ă  la Terre la mĂȘme face, il n’existe cependant pas de vĂ©ritable cĂŽtĂ© obscur ». La face cachĂ©e de la Lune est Ă©galement Ă©clairĂ©e par la lumiĂšre du Soleil mais elle n’est juste pas visible depuis la Terre. La partie illuminĂ©e change en fonction de la position de la Lune. LES ROCHES LUNAIRES Au cours des missions Apollo, les astronautes ont ramenĂ© sur Terre prĂšs de 400 kilos de roche lunaire, de sable et de poussiĂšre pour que les chercheurs puissent examiner la surface de la Lune. Ces Ă©lĂ©ments leur ont apportĂ© de prĂ©cieuses informations sur la formation de la Lune et son Ă©volution. TĂŽt dans son histoire, de grands ocĂ©ans de magma ont recouvert la Lune. Le magma s’est lentement refroidi en prĂ©cipitant des cristaux. Les minĂ©raux les plus lĂ©gers se sont rassemblĂ©s Ă  la surface. Une grande partie de cette ancienne croĂ»te lunaire est constituĂ©e d’anorthosite, une roche de couleur claire, qui constitue les parties lumineuses de la Lune que nous voyons depuis la Terre. Cette roche terrestre pourrait ĂȘtre la plus ancienne jamais trouvĂ©e et elle a Ă©tĂ© collectĂ©e sur la Lune. Aujourd’hui, des milliards d’annĂ©es plus tard, cette surface Ă©blouissante regorge de taches sombres. Ces zones obscures sont de vastes Ă©tendues de basaltes lunaires comparables aux roches qui forment les Ăźles hawaĂŻennes. Connues sous le nom de maria, qui signifie mer en latin, ces zones sont les consĂ©quences de coulĂ©es volcaniques. Selon les chercheurs, ces Ă©ruptions ne se poursuivent pas Ă  ce jour et l’explosion de la lave a eu lieu, en majeure partie, il y a trois ou quatre milliards d’annĂ©es. Certaines petites taches sombres sont des failles ou des fissures profondes Ă  la surface. Cependant, elles ne rĂ©sultent pas du mouvement des plaques tectoniques comme les failles Ă  la surface de la Terre. De nombreuses fissures se sont sans doute formĂ©es lorsque la Lune s’est refroidie puis contractĂ©e. D’autres proviennent de l’attraction gravitationnelle de la Terre. Cette activitĂ© a eu lieu en grande partie il y a trĂšs longtemps mais une Ă©tude des tremblements de terre Ă  l’époque des missions Apollo montre que tout ne remonte pas Ă  un passĂ© trĂšs lointain. La Lune n’est peut-ĂȘtre pas gĂ©ologiquement morte comme on peut le croire. Une masse mystĂ©rieuse dĂ©tectĂ©e sous la face cachĂ©e de la Lune. L’une des caractĂ©ristiques fondamentales de la Lune est sa surface criblĂ©e de cratĂšres qui se chevauchent. L’étude de ces cratĂšres et de la datation gĂ©ologique des roches ramenĂ©es sur Terre aprĂšs les missions Apollo, permet aux chercheurs non seulement d’avoir des informations prĂ©cises sur l’histoire du bombardement de la Terre et de la Lune mais Ă©galement d’établir une chronologie des autres entitĂ©s du systĂšme solaire. Comme sur Terre, le manteau lunaire se trouve sous la croĂ»te mais les chercheurs ne sont toujours pas sĂ»rs de sa composition exacte. Quelques dĂ©couvertes rĂ©centes suggĂšrent que les parties supĂ©rieures du manteau sont principalement formĂ©es de minĂ©raux comme l’olivine et le pyroxĂšne. Au centre de la Lune, se trouve un petit noyau de fer qui s’étend sur 480 kilomĂštres environ, selon l’analyse des donnĂ©es des enregistrements sismiques d’Apollo. PAS SI ARIDE QUE ÇA La Lune Ă©tait autrefois considĂ©rĂ©e comme un paysage aride. Cependant, les chercheurs ont dĂ©tectĂ© de nombreux signes qui prouvent que la Lune est plus humide qu’on ne le croit. Bien que l’eau ne puisse persister Ă  sa surface Ă  l’état liquide, tout pousse les chercheurs Ă  croire qu’il existe de la glace de maniĂšre permanente dans certaines des zones ombragĂ©es de la Lune. De minuscules Ă©clats de verre en provenance d’anciennes Ă©ruptions volcaniques suggĂšrent qu’il existe une grande quantitĂ© d’eau dans les minĂ©raux. De plus, l’eau semble se dĂ©verser lorsque les mĂ©tĂ©ores entrent en collision avec la surface de la Lune. On Ă©value la quantitĂ© d’eau qui coule Ă  220 tonnes par an. Une source prĂ©cieuse pour les ĂȘtres humains qui s’aventureront sur la Lune Ă  l’avenir ou mĂȘme pour les rĂ©sidents des bases lunaires qui serviraient de point de dĂ©part Ă  une exploration plus profonde de l’espace. AVEC OU SANS LUNE ? Le changement de cycle rĂ©gulier entre nouvelle lune et pleine lune a permis Ă  l’Homme de concevoir un calendrier qui montre les nombreuses phases de la Lune et leur incidence sur la surface de la Terre. Le phĂ©nomĂšne des marĂ©es est une des manifestations les plus visibles et les plus spectaculaires de l’influence exercĂ©e par la Lune sur la Terre. L’attraction gravitationnelle de la Lune sur l’ocĂ©an produit deux renflements, diamĂ©tralement opposĂ©s. Au fur et Ă  mesure que la Terre tourne, la partie affectĂ©e par l’attraction lunaire change, crĂ©ant une marĂ©e haute toutes les 12 heures. De plus, la Lune permet de stabiliser l’axe de rotation de la Terre, et donc son climat. L’orientation de l’axe a une incidence sur la rĂ©partition de l’énergie solaire sur Terre et, par ailleurs, sur les avancĂ©es et les retraits des calottes glaciaires. Sans la Lune, les chercheurs estiment que l’inclinaison de la planĂšte varierait de 0 Ă  85 degrĂ©s, ce qui provoquerait des fluctuations incontrĂŽlĂ©es au niveau du climat. Toutefois, l’emprise de la Lune sur notre planĂšte devient de plus en plus faible Ă  mesure qu’elle s’éloigne de la Terre environ 3,8 centimĂštres chaque annĂ©e. Ce phĂ©nomĂšne est essentiellement dĂ» aux marĂ©es terrestres. L’onde créée par le dĂ©placement des eaux exercerait une force gravitationnelle sur la Lune qui accĂ©lĂ©rerait son mouvement et entraĂźnerait son lent Ă©loignement. N’ayez pas peur. Il est fort peu probable que la Lune disparaisse complĂštement. Pour les millĂ©naires Ă  venir, notre petit satellite lumineux continuera de tourner autour de la Terre pendant que nous poursuivons notre rotation autour du Soleil. À moins que notre planĂšte ne soit avalĂ©e par notre Soleil mourant. La Terre pourrait un jour connaĂźtre le destin de cette petite planĂšte. Cet article a initialement paru sur le site en langue anglaise. Sources NASA science The moon The Moon stepping stone to the planets Oregon State Volcanism on the moon Lunar and Planetary Institute About our moon Cornell's Ask an astronomer Is the moon moving away from the Earth? NASA News The moon has an Earth-like core Smithsonian National Air and Space Museum Lunar rocks University of Hawaii The oldest moon rocks NASA Blogs Why study the moon? NOAA SciJinks What causes tides?

Pourquoila lune ne tombe t’elle pas sur la terre. La force exercĂ©e par la terre sur la lune est une force Ă  distance. La trajectoire de la lune est circulaire. Les forces pointent vers la terre. La lune ne tombe pas sur la terre car sa vitesse est suffisante.

La Lune, la Terre et la gravitĂ© 06 juin 2016 Avez-vous dĂ©jĂ  observĂ© un fruit ou un objet tomber d’un arbre ? Avez-vous dĂ©jĂ  essayĂ© de lancer une pierre avant d'assister Ă  sa chute ? La force qui attire toute chose vers le sol s’appelle la gravitĂ©. Nous sommes constamment attirĂ©s vers la Terre en raison de sa force de gravitĂ©. C’est la raison pour laquelle nos pieds finissent toujours par toucher le sol. Que nous soyons en contact direct avec la Terre ou lĂ©gĂšrement Ă©loignĂ©s d’elle, notre planĂšte exerce sur nous sa force de gravitĂ©. Le phĂ©nomĂšne de la gravitĂ© explique pourquoi la Terre tourne autour du Soleil et la Lune tourne autour de la Terre. La force de gravitĂ© est dĂ©terminĂ©e par la masse d’un objet. La force de gravitĂ© exercĂ©e entre deux objets est donc proportionnelle Ă  leur masse, et cette force diminue trĂšs vite Ă  partir du moment oĂč ces deux objets sont suffisamment Ă©loignĂ©s. Nous attirons nous aussi des objets avec notre propre force de gravitĂ©, mais nous sommes trop lĂ©gers pour en voir les effets ! Le Soleil est quant Ă  lui si Ă©norme qu’il parvient toujours Ă  nous maintenir sous sa force de gravitĂ©, peu importe sa distance avec la Terre. La Lune exerce elle aussi une force de gravitĂ©, mais celle-ci est bien moins importante que sur Terre. Sur la surface lunaire, votre poids serait par exemple six fois plus faible que sur Terre ! Vous vous demandez peut-ĂȘtre pourquoi la Lune ne tombe pas sur Terre comme le ferait une pomme depuis un arbre. C’est parce que la Lune n’est jamais immobile elle est constamment en mouvement autour de la Terre. Sans la force de gravitĂ© de la Terre, la Lune se contenterait de flotter dans l’espace. Le mouvement permanent de la Lune conjuguĂ© Ă  sa distance de la Terre lui permet d’ĂȘtre en Ă©quilibre parfait entre chute et flottement. Si son mouvement Ă©tait plus lent, elle tomberait sur Terre. S’il Ă©tait plus rapide, elle flotterait de maniĂšre incontrĂŽlĂ©e dans l’espace. La force de gravitĂ© dĂ©pend donc Ă©galement de la distance. Si nous pouvions nous Ă©loigner suffisamment de la Terre, nous pourrions Ă©chapper Ă  son attraction. C’est ce que nous essayons de faire avec les navettes spatiales. Pour rejoindre l'espace, nous devons ainsi atteindre et dĂ©passer ce que l’on appelle la vitesse de libĂ©ration », qui est d’environ 11,2 km/s. À cette vitesse, nous pourrions aller de Londres Ă  New York en 10 minutes ! Une fois qu’une navette atteint cette vitesse, elle est capable de rallier et de parcourir le systĂšme solaire. Nous ne subissons pas la force de gravitĂ© terrestre Ă  l’intĂ©rieur d’une navette en orbite. Les objets ne tombent pas, ils flottent librement. Si vous sautez en l’air, vous ne retombez pas. La mĂȘme chose arrive aux astronautes quand ils Ă©voluent dans une station spatiale orbitant autour de la Terre. Sansla Terre, la lune serait donc une sorte d’astĂ©roĂŻde qui parcourrait l’espace Ă  grande vitesse. On peut donc effectivement dire que la lune tombe sur Terre,
Vue de la terre depuis la lune par Apollo 15 © NASA/JSC La rĂ©ponse d’Images Doc En fait, c’est le contraire, elle n’arrĂȘte pas de tomber
 Sur la Terre, les objets tombent vers le sol parce que notre planĂšte attire toutes les matiĂšres vers son centre. On appelle cela la gravitĂ©. Ainsi elle dĂ©termine oĂč sont le haut et le bas sur la Terre. Dans l’espace, la gravitĂ© existe aussi. D’ailleurs, la Terre est attirĂ©e par le soleil et elle tombe vers lui. Mais comme elle se dĂ©place trĂšs vite, elle ne l’atteint jamais et la Terre ne fait que tourner autour. On dit qu’elle est en orbite, comme les autres planĂštes du systĂšme Solaire. Le Soleil, lui non plus, n’est pas fixe dans l’espace. Il subit la gravitĂ© d’un trou noir qui se trouve au centre de notre galaxie, la voie LactĂ©e. Ainsi comme toutes les autres Ă©toiles, le soleil tourne autour cet objet beaucoup plus massif que lui. Quant Ă  notre galaxie, elle est elle-mĂȘme attirĂ©e par une autre galaxie, la galaxie AndromĂšde et elle se dĂ©place lentement vers elle. Ainsi dans l’espace, tout est en mouvement et rien ne cesse de tomber
 Abonnez votre enfant Ă  Images Doc
Répondre 2 on une question Pourquoi la lune ne tombe pas sur la terre ? - réponse sur le e-connaissances.com
La lĂ©gende veut que les fondements de la gravitation aient germĂ© dans l’esprit de Newton grĂące Ă  une pomme. En effet, lors d’une promenade dans son verger, Newton voit tomber une pomme tandis que la lune brille dans le ciel. Pourquoi diable la lune ne tombe-t-elle pas aussi comme cette pomme ? Les lois de la gravitation qui s’appliquent Ă  la pomme du verger de Newton s’appliquent aussi aux sommets des montagnes et doivent certainement aussi s’appliquer Ă  des altitudes supĂ©rieures voire bien supĂ©rieures Ă  celle de la lune. Newton comprend alors que les lois de la gravitation doivent ĂȘtre universelles et que si la pomme est attirĂ©e par la Terre, la lune doit donc elle aussi ĂȘtre attirĂ©e par la Terre. Mais pourquoi donc ne tombe-t-elle pas sur Terre tout comme cette fameuse pomme ? Imaginons maintenant que Newton ramasse cette pomme et la lance devant lui. Elle va retomber quelques mĂštres plus loin. S’il la lance plus fort, elle va retomber encore plus loin. Ainsi, plus la vitesse de la pomme est grande, plus le point de chute est Ă©loignĂ©. Imaginons dĂ©sormais que Newton dispose d’un canon Ă  pomme hyperpuissant capable de propulser les pommes Ă  de trĂšs grandes vitesses. La pomme, lancĂ©e Ă  trĂšs grande vitesse, suit alors une trajectoire quasiment droite sur une trĂšs grande distance et voit le sol s’éloigner plus vite qu’elle ne chute puisque la Terre est une sphĂšre. Dans ce cas, la pomme n’atteindra jamais le sol et partira dans l’espace. Tout devient alors clair dans l’esprit de Newton. Si la pomme a une vitesse suffisante, elle fera le tour de la Terre sans tomber au sol et si sa vitesse est encore plus grande, elle s’échappera de l’attraction de la Terre et partira dans l’espace. En fait, la lune tombe constamment sur la Terre, sauf que du fait de sa grande vitesse, elle n’atteint jamais la Terre qui se dĂ©robe. texte de Thomas M.
Pourquoila Lune ne tombe-t-elle pas sur la Terre ? Est-ce que la gravitation peut disparaĂźtre ? (4eme de couverture du livre La gravitation ou pourquoi tout
Tendance Quel est le diamĂštre de Neptunes en km? Neptune est la huitiĂšme planĂšte par ordre dĂ©loignement au Soleil et la plus Ă©loignĂ©e connue du SystĂšme solaire. Elle orbite autour du Soleil Ă  une distance denviron 30,1au , avec une excentricitĂ© orbitale moitiĂ© moindre que celle de la Terre et une pĂ©riode de rĂ©volution de 164,79ans. Il sagit de ... Afficher la rĂ©ponse » 12 ans datant des conseils fĂ©minins? AprĂšs avoir explorĂ© la base de donnĂ©es, nous n avons pas trouvĂ© de rĂ©ponses Ă  cette question... essayez de partager sur Facebook avec le bouton de partage ou recherchez des rĂ©ponses premium si elles sont disponibles. Peut-ĂȘtre que quelqu un rĂ©pondra Ă  votre question ... Afficher la rĂ©ponse » Quand Logan Browning est-il nĂ©? Matthew Modine, nĂ© le 22 mars 1959 Ă  Loma Linda , est un acteur, rĂ©alisateur et scĂ©nariste est notamment connu pour ses rĂŽles dans le film Birdy dAlan Parker puis dans Full Metal Jacket de Stanley Kubrick ... Afficher la rĂ©ponse » Quels sont les facteurs qui font que les types d’organisation commerciale diffĂšrent les uns des autres? AprĂšs avoir explorĂ© la base de donnĂ©es, nous n avons pas trouvĂ© de rĂ©ponses Ă  cette question... essayez de partager sur Facebook avec le bouton de partage ou recherchez des rĂ©ponses premium si elles sont disponibles. Peut-ĂȘtre que quelqu un rĂ©pondra Ă  votre question ... Afficher la rĂ©ponse »
. 126 106 55 132 356 694 790 783

pourquoi la lune ne tombe pas sur la terre